
Project 1 - Distributed Backup Service 

 
T2G01 

Francisco Tomé Macedo Martins Santos Moreira – up201607929 

Antero Campos Gandra – up201607926 

 
This report sets to describe the enhancements and concurrency implementation for the 
Distributed Backup Service proposed. 

Concurrency Implementation 

Our Concurrency implementation seeks to be efficient and robust by not resorting to any 
inactive waiting periods within or between protocols. To achieve this we divide individual 
tasks into threads as much as possible and focus on making sure all dependant tasks 
don’t have to wait. 

This can be seen in many regions of our implementation. To begin with, each Peer has a 
Socket Thread for each of their Multicast Channels. This allows the Peer to process 
messages coming from multiple channels at the same time. However if each of these 
threads processed the messages themselves that would stall the system of other 
messages coming from those channels. Therefore when a Socket thread receives a 
Datagram Packet it launches an Interpreter thread to handle processing the message 
and so the Socket thread can be ready to receive other messages from that Channel. 

This allows the system to be much faster and responsive as well as more reliable. 
However, using multiple Interpreter threads means that much of the Peer information is 
going to be accessed and altered by many threads at the same time. To use this safely 
we make use of the many tools java provides to handle concurrency. Specifically we 
make use of ConcurrentHashMap as well as AtomicBoolean. 

 

 

 

 

 

 

 



Enhancements 

Due to time constraints we weren’t able to implement any of the proposed 
enhancements even though we took notes and planned our approach. 

- Backup 

For the backup enhancement we considered an approach similar to that of the base 
version of the Restore Protocol, that is, have each of the peers that receive a PUTCHUNK 
message wait a random delay uniformly distributed between 0 and 400 ms. If during this 
period they receive a STORED message for the same chunk and the replication level of 
the chunk is satisfied then the chunk no longer needs to be saved by the peer and space 
can be saved. 

- Restore 

For the restore enhancement we considered using a direct TCP connection from the 
peers with chunks to the peer asking for them. This would require setting up new 
messages to exchange the IP and port. 

- Delete 

For the delete enhancement we considered keeping a registry of all the files a peer has 
asked to be deleted. Additionally, when a peer joins the network it would send a message 
signalling the other peers all the chunks it currently holds. With this, when a peer that 
deleted a file finds that a peer still has chunks for that file it would resend a message to 
delete that same file. This would guarantee peers don’t waste space with chunks for files 
that are no longer used. 


